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Introduction

The thermosyphon effect is achieved when heat is transported between two
objects by means of the natural convection of a fluid under the influence of a
body force. Japikse (1972) reviewed the use of this effect in gas turbine blade
cooling, transformer cooling and cooling of nuclear reactor. It is also commonly
used in evacuated tubular solar water heaters (Chow et al., 1984). Evacuated
tubular solar absorbers are basically long cylinders whose bottom end is sealed
and whose top is connected to a reservoir. Under exposure to the sun natural
convection currents are generated within the cylinder, driving an exchange of
fluid as well as heat between the absorber tube and the reservoir.

The present work, which aims to investigate the flow of water inside such
enclosures, is made up of two parts: the numerical model and experimental
observations. The numerical model consists of the solution of the equations of
conservation of mass, momentum and energy, by means of a finite difference
iterative algorithm. The solution domain is a cylindrical cavity with heated
walls, whose bottom is sealed and whose top is open to a uniform temperature
reservoir. Since the reservoir is not part of the domain, special boundary
conditions are required for the open end of the cylinder so that the mass transfer
into and out of the cylinder can be simulated.

Abib and Jaluria (1988) reported a two-dimensional solution of flow inside a
partially open cavity, using the vorticity-stream function formulation of the
governing equations. They assumed that the entry and exit velocities at the
open end were normal to the opening and that the gradient in the normal
direction was zero, which is like fully developed flow. They made the same
assumption (i.e. fully developed in the outward normal direction) about all other
variables on that surface, including vorticity and stream function. For three-
dimensional domains such as the present problem, a generalised solution was
developed by Hirasaki and Hellums (1967) for the vector potential on any
surface, solid or flow-through. This involved the introduction of an auxiliary
vector B whose surface curl gives the tangential components of the vector
potential on the surface. The present work is an extension of their approach, in
that their generalised formula is re-worked in cylindrical coordinates and

©McB University Press, 09615530 applied to a surface, which has both inflow and outflow.



Solutions are generated for various combinations of Rayleigh number, aspect
ratio and mode of heating. Rayleigh number ranges from 10° to 108, aspect ratio
(L/R,) from 10 to 50 and two heating configurations. Either the wall
temperature is set to a uniform value all around the sides of the cylinder
(uniform wall heating, UWH); or one uniform temperature is applied on the
upper surface (which normally faces the sun in a typical solar absorber) and
another uniform temperature on the lower surface (which normally faces a
reflective panel). The latter mode of heating, called differential wall heating
(DWH), is the more relevant form of heating in the solar application. Tubes used
in evacuated tubular solar collectors are typically 1m long and 30 to 50mm in
diameter. The tubes are spaced apart by one to two diameters with a reflecting
surface behind the tubes. With this configuration the top and back of the tubes
are heated, however, the top surface which is exposed directly to the sun usually
receives higher radiant energy input.

The experimental part of the work involves the measurement of flow in an
artificially heated inclined thermosyphon. Similar aspect ratios and heating
conditions as in the numerical model were used but the Rayleigh number was
limited to approximately 108, Measurement of axial velocity was done at the
orifice by means of laser doppler anemometry. Flow visualisation has been
reported by Behnia et al. (1987) on a similar experimental rig. They traced the
flow inside the thermosyphon by introducing dye and tracer particles and made
temperature measurements on the central vertical plane by inserting a movable
multi-sensor thermocouple rake into the tube. The LDA measurements in the
present investigation gave the axial velocity profiles at the orifice, which were
compared with the results of the numerical model.

Numerical model

The numerical model simulates the flow in a cylinder as shown in Figure 1. The
heated sides are non-slip impermeable walls. The bottom is also a solid non-slip
wall but is adiabatic. The top allows inflow and outflow to the reservoir.
Incoming fluid is assumed to have the temperature of the reservoir, while
outgoing fluid is assumed to have zero axial temperature gradient in the z-
direction. The velocity at the orifice is assumed to have no transverse
components (i.e. u = v = 0) which gives ow/dz = 0 for the continuity equation to
be satisfied there. Boundary conditions of vorticity and vector potential are
discussed in detail below.

Governing equations
The non-dimensional vorticity transport and energy equations governing
buoyancy driven laminar flow are as follows

%-Vx(gxf)=—RaPer9§-Per(fo] (1)
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Figure 1.

Cylindrical domain of
numerical solution, open
top leads to reservoir
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end
(reservoir)

inflow

(adiabatic)
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where Pr is the Prandtl number defined as v/k and Ra is the Rayleigh number
BgATR%Pr/vZ. These equations were solved for the steady-state condition. The
non-dimensional velocity, length, time and temperature are defined as follows:

SR S PO e '

v, Ry Ry T AT
where V, R, and t" are scale factors and T,,= %(T,+T.q and
AT=A(T 0= Teoid) Thot IS the temperature of the heated upper half of the curved
cylindrical wall and T, is the temperature of the lower half of the curved
cylindrical wall. The term ( is the volumetric coefficient of expansion, T the
temperature, g the gravity vector, v the kinematic viscosity and k the thermal
diffusivity.

The scale factor V for velocity is obtained by equating the coefficients of the
advection term and the thermal diffusion term in the energy equation to give V
=k/R

An?j to ensure that the thermal diffusion term will be of unit order of
magnitude, we use t* =R3/k.

Boundary conditions (impermeable walls)

The sides of the cylinder and the bottom end are impermeable non-slip walls
and therefore all components of velocity are zero there. One temperature 8, is
specified on the entire sidewall in uniform wall heating mode. In differential
wall heating, 6, is specified on the upper surface of the cylinder wall and 6,



on the lower. The bottom end is assumed to be adiabatic therefore 00/0z is zero
there. The heated wall boundary condition is 8 =1 and in the case of differential
heating the lower wall boundary condition is 8 =0.

Boundary conditions for vector potential are similar to those of Hirasaki and
Hellums (1967), that is on the curved walls

ry,)
and on the bottom end wall
oy,
V=V, =>t= ®)

The boundary conditions for vorticity are presented here without discussion as
their derivation is quite lengthy but they are based on the assumption that
vorticity varies linearly within the first interval from wall (a complete
derivation is given by Leong (1981)). At the end wall the following boundary
conditions apply:

3 39y, o 6
gr,N =_FW:-,N—1 - a:;: i - it ( )

Az or |y, 2
3 1 3 dy l géN—l
= —— - L (7)
Con A Voo N1 ; Az 96 |~ )
and
gz,N =0 (8)

where N is the number of nodes in the z-direction. On the sidewalls the same
method is used to determine the boundary values of vorticity.

Boundary conditions (flow-through surface)

It is assumed that the fluid entering the thermosyphon is at the reservoir
temperature. All fluid going out is assumed to have a fully developed
temperature distribution, i.e. 36/0z = 0. At the orifice all transverse components
of velocity (i.e. u and v) are assumed to be zero, therefore in order to satisfy
continuity there, we have ow/dz = 0.

The vorticity boundary condition at the orifice cannot be derived in the same
manner as with impermeable walls because the tangential components of
vector potential are no longer zero there. The most convenient way of specifying
vorticity on the open surface (k = 1) is by using the definition of vorticity in
terms of velocity:
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(11)
since u = v = 0 on this surface. The first node in the z-direction is denoted by
k=1

For the solution of vector potential at the open surface, we introduce an

auxiliary vector B, whose surface curl gives the tangential components of
vector potential.

7, =V,xB (12)

This vector Bexists only on the open surface and does not extend to the interior
points. It is also assumed to have no tangential components on the r-@ plane
hence B=(0,0,B,k)

Therefore (4) can be expressed as

_1dB, (13)
v, = r d¢

__9B, (14)
Vo=""5

By the definition of the vector potential, the relationship between B and the
velocity is given by

H=VxV,xB (15)

This gives a means of determining the distribution of B along the open surface,
provided that the velocity is known there. Wong and Reizes (1984) and Yang
and Camarero (1986) used a fixed velocity distribution on the orifice in their
open duct simulations. They therefore had to solve B only at the beginning of
their iterative solution. In the present work, velocity is updated at the orifice at
each iteration using ow/dz = 0, and B therefore is likewise progressively
updated. _

Since the transverse components of u and B are zero, equation (15) reduces
o

1B, 9’8, 19°B (16)
ror ot r? op?

w=



For equation (16) to be solved at the open surface, boundary conditions for B,
must be provided at the edges. Hirasaki and Hellums state that the only
requirement for the use of B is that W should be continuous at the adjoining
surfaces. Along the sidewalls %= 0, which may be satisfied by equation (14) if

9B, _
2

The boundary condition for ¥, at the sidewalls is o(r %,)/or = 0. Again using
equation (14) we get
B,
orop

If this is integrated over one revolution, then

2%1 _3_13,_1 =0 (19)
orl,, orl,

which can also be satisfied by equation (17). The third component of vector
potential has the same boundary condition whether the surface is impermeable
or flow-through, therefore (19) is a sufficient boundary condition for (17) to be
solved on the orifice.

(17)

(18)

0

Solution procedure

The governing equations (1), (2) and (3) were re-written in cylindrical polar
coordinate form and then approximated by finite differences. A mesh size of
31 x 32 x 33 distributed in uniform intervals in the r-, @ and z-directions
respectively was used. A more detailed mesh system was investigated and only
minor changes were observed in the mass flow in and out of the cylinder. Nodes
were not placed on the central axis of the cylinder to avoid the singularity in
terms having 1/r for a coefficient. Central spacing is used on spatial derivatives
and forward differencing for all time derivatives. The alternating direction
implicit (ADI) scheme is used to solve the parabolic equations (1) and (2), with
the aid of a false transient factor. Thus the transient path towards convergence
cannot be regarded as the true transient solution. For the solution of the elliptic
equation (3), the successive over-relaxation (SOR) method is used.

At the beginning of a solution, all field variables (U, ¥,  and ) are set to
zero, with the exception of the temperature values at the walls. The solution is
obtained in a stepwise iterative manner in time. The temperature at the orifice
will depend on whether fluid is incoming or outgoing. Vorticity is solved from
equation (1) on all internal points and then at the solid walls using (6) to (8). At
the orifice, vorticity is solved from (9) to (11). The vector potential is solved from
the vorticity field using (3) at all internal points and using (4) and (5) on the
impermeable walls. For the open end equations (13) and (14) are used. The
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Figure 2.
Experimental test rig

velocity field is then updated directly from the vector potential but at the orifice,
ow/0z = 0 is used. Finally B is solved from the velocity field at the orifice using
equation (16) with the SOR method. Convergence is measured by the rate of
change of the temperature and vorticity fields within a time step. When the sum
of all nodal changes of these variables goes below 1072, then the solution is
assumed to be converged. As the temperature differences used in the
experiment were relatively small (AT < 20K) the spatial variations of fluid
properties, other than density, were not considered.

Experimental investigations

Figure 2 shows the general layout of the experimental rig. The thermosyphon is
made up of a glass cylinder (22mm inner diameter, 1,400mm long) which is
enclosed over 1,200mm of its length by a perspex heating jacket with upper and
lower heating chambers. Two temperature controlled water flows were
circulated in the two chambers in order to obtain differential heating. The glass
cylinder is sealed on the bottom with a solid perspex plug 80mm long to ensure
that it acts like an adiabatic wall. The plug may be positioned anywhere along
the tube so that the aspect ratio of the active section of the thermosyphon may
be changed. The top of the thermosyphon is connected to a uniform
temperature water reservoir, 520 x 520 x 760mm in size.

A laser doppler anemometer was mounted on the same frame as the
thermosyphon in order to eliminate all relative movement. The laser beam is
split into two beams of equal intensity and then focused inside the
thermosyphon. Back-scattered light, which contains the velocity information, is

beamsplitter and
—_— backscatter unit

\ laser beam
/

Constant
temperature
reservoir

flow to constant
temperature baths

perspex
end plug

7#
flow from constant
temperature baths



received by a photomultiplier, attached to the beam splitter assembly and is
converted into electrical signals. These signals are then filtered and processed
by an input conditioner and frequency counter. Visual information is presented
to the screen of an oscilloscope and further processing is done by a personal
computer, which finally gives the velocity at the measuring point.

The thermosyphon tube and the beam splitter assembly and related optics
are carried by a frame whose angle of inclination can be adjusted. This
eliminates the need for re-alignment whenever the angle of inclination of the
thermosyphon is changed. The splitter assembly sits on a slider, which allows
it to traverse the length of the thermosyphon without changing its angle with
respect to the incident laser beam, thus allowing measurement of axial velocity
on any diameter along the thermosyphon. The entire backscatter unit, which
houses the beam splitter, transmitting lens and receiving mirror, sits on a
traversing mechanism which allows it to move along the axis of the incoming
laser beam. With the traversing mechanism, the focal point of the two beams
may be positioned anywhere along a chosen diameter. Diametrical velocity
profiles may then be generated. Re-alignment is minimal when tube inclination
is changed or when the splitter is traversed down the tube. The operation of the
laser system was verified by using it to measure fully developed laminar flow
through the test tube.

Experimental procedure

At the beginning of each run the tank is filled with tap water, which contains
enough impurities so that artificial seeding for light scattering is not required.
For the case of uniform heating, the heating baths for the two chambers are set
to the same temperature. In differential heating mode the lower chamber is
supplied with water at the reservoir temperature. The characteristic length is
the radius (R, = 0.011m) and the temperature difference is defined as
(Thot=Tcolg)/2. For a temperature difference of 5K the Rayleigh number
is 3.56 x 10°. In each run the thermosyphon is allowed to heat up undisturbed
until buoyancy-driven motion ensues and reaches steady state. This period
normally takes approximately one hour. The difference in the inlet and outlet
temperatures of the water flow through the two heating chambers was
maintained at less than 0.1K by using high circulation flow rates. This ensured
that there was an isothermal outer boundary temperature, however, the inner
surface of the glass may not be isothermal due to circumferential conduction
through the glass.

The velocity was measured at 12 points over the diameter. Only axial
velocity was measured because the azimuthal component was expected to be
zero due to symmetry. The radial component was not measured due to obstacles
to visibility, such as heating chamber partitions and lengthwise joints
separating the two heating chambers. As a laser doppler anemometer provides
a vector velocity measurement the presence of azimuthal components of
velocity at high Ra does not effect the accuracy of the axial measurements. The
orifice was the area of greatest interest, and therefore the profiles were
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Figure 3.

Particle tracks for
uniform wall heating,
Ra = 103, L/R,=10.

measured there before anywhere else. Measurements were performed for aspect
ratios 10 to 50 at intervals of 10. The point along the cylinder at which the laser
measured the velocity was 17.5mm inside the tube, in order to allow the two
intersecting laser beams from the beam splitter to reach the measuring point
unobstructed.

Numerical results

Uniform wall heating mode

All the numerical results are for an inclination of 45°. Figures 3 and 4 show
particle trace lines for an aspect ratio (L/R) of ten. Flow at Ra=10% is made up
of two main streams, a cool one going down and a warm one rising up; such
flow is called bifilamental. Cooler and heavier fluid from the reservoir enters
through the lower half of the orifice cross section, meets the heating surface and
immediately rises into the top return stream, thus only a small portion actually
reaches the bottom closed end of the cylinder. Most of the cool stream breaks up
into smaller filaments which fan out to the side walls and are directed up to the
hot return stream on the top wall of the cylinder. For a Ra of 106 upward moving
streams are strong enough to cause interference at the orifice. Heating is applied
all around and therefore some hot streams generated below the cool core rise up
in the middle and interfere with the incoming stream. This interaction causes
the formation of a secondary flow at the orifice: a portion of the incoming cold
stream short circuits back to the reservoir soon after entering the orifice. The
same interaction between warm and cool streams may be observed at higher Ra
with the same aspect ratio. These computational results are generally
supported by the observations of Behnia et al. (1987).
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(a) side view, central vertical plane,
(b) top view, side wall flow,
(c) side view, side wall flow.
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(a) top view, central vertical plane, (b) side view, central vertical plane,
(c) top view, side wall flow, (d) side view, side wall flow,
(e) top view, bottom wall flow, (f) side view, bottom wall flow.

The effects of heating from the lower wall are manifested through disturbance
of the separate flow streams near the orifice where a splitting of the tracks may
be seen, and upward flow from the lower regions of the cylinder.

The interference near the orifice will be discussed in the section on “entrance
effects”. The upward flow along the curved wall occurs along the length of the
cylinder as a consequence of uniform heating. An annular ring of rising fluid is
formed near the walls while an eccentric core of cool fluid sinks in the middle.
While at low Ra bifilamental flow was predominant, at higher Ra the flow may
be said to have both bifilamental and annular characteristics (see Figure 5).
Flow of a similar kind was also observed by Lock and Zhao (1990) in their
numerical simulation of an inclined open thermosyphon with a rectangular
cross-section, at low Rayleigh numbers.
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Figure 4.

Particle tracks for
uniform wall heating,
Ra = 105, L/R,=10
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Figure 5.
Three-dimensional
contour plots of axial
velocity along the
cylinder, uniform wall
heating, L/R, = 10,
Ra=10°
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Martin and Cresswell (1957) observed that if an open thermosyphon is
gradually inclined from the vertical then the Nusselt number at the walls
decreases initially and then rises again to its original value when it reaches an
inclination of 45°. In the vertical position flow was completely annular while at
45° flow was bifilamental. In between the two positions, a number of unstable
states may be found which tend to promote mixing between the hot and cold
streams and consequently reduce heat transfer.

Entrance effects

The boundary conditions used for the orifice allow one to calculate the
distribution of velocity and temperature. The result shows cool inflow on the
lower half of the orifice and warm outflow on the upper half. The cross-sectional
distribution between the two opposing streams is not equal since the outgoing
stream tends to travel at higher velocities.

For an open vertical thermosyphon there is considerable interference at the
orifice, however, no such interference was observed at the orifice of the inclined
differentially heated tube. For the uniformly heated cylinder, however, the rising
fluid layers from the lower wall may be seen to interfere with the incoming cold
stream at the orifice, causing part of that cold stream to short circuit back to the
reservoir. One immediate effect of the interference is the splitting of the cold
stream into two, as may be seen in Figure 6. The cold stream from the reservoir
still enters through the lower section but peaks in two places on either side of
the central vertical plane.

Differential wall heating mode

Like the uniform wall heating mode the flow is predominantly bifilamental,
being made up of a U-loop over a wide range of Rayleigh numbers. The flow is,
however, more stable than for uniform heating. In this configuration there are



no interfering streams generated near the orifice and impedance between the
opposing currents is minimised.

The mass flow rate passing through the thermosyphon was calculated by
numerically integrating the negative axial velocity component out of the tube
over the area of the orifice. This is plotted as a function of Rayleigh number in
Figure 7. It is evident that the fluid goes through a transition between Rayleigh
numbers of 10° and 108. Up until 10° the development is gradual and smooth,
but above 10° secondary flows begin to emerge and fluid turnover goes through
a rapid increase.

Heat transfer results

For the purpose of heat transfer calculation, correlations are obtained for the
Nusselt number. Early analytical work like Lighthill (1953) employed simplified
models for the calculation of the Nusselt number. By assuming that the
boundary layer thickness is very small compared with the radius of the cylinder
Lighthill was able to show that the heat transfer may be modelled in a manner
similar to that of a flat plate, that is

Nu=Cy (20)

where t, is RaR,/L and C, is a constant. For the present numerical work the
Nusselt number is calculated from the temperature distribution solution as
follows,
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Figure 6.

Axial velocity contours
at the orifice, L/R;= 10.
(a) Ra = 103, (b) Ra = 10%,
(c) Ra=10°, (d) Ra = 108
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Figure 7.

Mass flow rate (non-
dimensional) vs.
Rayleigh number, for

differential wall heating,

L/R,=10
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Leslie (1960) analytically solved the problem of an inclined open thermosyphon,
but his solution is limited to small angles of inclination. His work is, however,
the only one of its kind and will therefore be used here for comparison, even
though the range of Ra, aspect ratio and angle of inclination are beyond those
that he specified for an accurate determination of Nusselt number. His
correlation is

f4
Nu=§(!—l\J (1+00017¢ 2) (22)
3\ 240

where € = (L/R)tany, and y is the angle of inclination from the vertical.

Martin and Cresswell (1957) and Hasegawa et al. (1963) experimentally
investigated the open thermosyphon in its inclined and vertical forms
respectively. Relevant selections from their results are also presented for
comparison.

It may be seen from Figures 8 to 10 that Leslie’s analysis gives a consistently
higher Nusselt number than either Hasegawa’s experimental results or the
present numerical predictions. Leslie and Lighthill based their perturbation
solutions on the assumption that Pr approaches infinity, which in the boundary
layer regime could be expected to give slightly higher Nu values than for Pr =
1. Lighthill deliberately ignored the inertia terms in the momentum equation by
making such an assumption. Leslie qualified his claims for accuracy by limiting

(21)
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Figure 8.

Nusselt number as
function of t;, for
differential wall heating

Figure 9.

Nusselt number as
function of aspect ratio,
for differential wall
heating mode, Ra=108
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Figure 10.

Nusselt number as
function of Ra for
uniform wall heating
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the applicability of his solution to small inclinations from the vertical. Lighthill
completely ignored the azimuthal component of velocity since the boundary
conditions on a vertical open thermosyphon were axi-symmetric, and
performed integrations in the radial and axial directions only. Leslie included
an azimuthal component in his analysis but its effect was limited to a few
additional trigonometric functions. At small angles of inclination the flow is, by
and large, annular, which is just like the vertical thermosyphon except for the
slight eccentricity of the incoming flow, whereas flow at higher inclinations is
predominantly bifilamental. Leslie’s perturbation functions are essentially two-
dimensional.

Martin and Cresswell’s experimental results were determined for a higher
range of Ra but there is an overlap at 10° (Figure 10). There is a qualitative
agreement between their experimental results and the numerical results of the
present work, as far as the trend is concerned. Leslie’s results also show good
agreement with the experimental and numerical results.

The abrupt transition of Nusselt number with t; observed in the present
numerical at t1=104 study (Figure 7) has previously been reported in several
analytical, numerical and experimental investigations strongly implying
instability in this region. Such instability is typically accompanied by
oscillation in the orifice temperature, as observed experimentally by Hasegawa



et al. (1963). The oscillation was observed to subside as t; was increased further,
and the flow entered into the bifilamental regime.

Secondary flows near the orifice have been associated with transition from
impeded to boundary layer flow, but they have not been cited as being the cause
of it. The effect of aspect ratio on the onset of transition has not yet been fully
determined, however, its influence if any can only be secondary. The
experimental investigations of Martin (1955) are unclear: certain substances,
such as water, seem to be aspect ratio dependent, while others, such as air, are
not. The factor most critical to transition is the Rayleigh number. If there is a
critical value for the uniform heating mode, it would be between 10* and 10°,
when secondary flows emerges near the orifice and the Nusselt number
plateaus. In the differential heating mode, the critical value will occur after Ra
of 10° as shown in Figure 7. If Nusselt number is to be used as the criterion, then
it may be seen that between Ra = 10° and 108 (i.e. between t, = 10* and 10° in
Figure 8) there is a steep increase in heat transfer.

From the numerical results a correlation for uniform wall heating similar in
form to that of Lighthill was obtained as follows:

Nu=061" (23)

The coefficient for uniform wall heating agrees favourably with figures
developed by the early workers. Leslie gives 0.677 for a vertical cylinder filled
with water and Squire (Goldstein, 1938) gives 0.654.

For differential wall heating a power function correlation of the above form
can be fitted to high Ra number results, however, it does not match the low Ra
results.

For Ra > 10°

Nu= 0.34 t,*% (24)

For Ra < 10° the Nusselt number seems to plateau at Nu= 0.95.

Experimental results

Figure 11 shows the velocity profiles on the central vertical plane for an aspect
ratio of 10 and Ra from 7*10° to 1.75*106. The general shape of the profiles is
the same for the range of aspect ratio considered and suggests that the flow
near the orifice is essentially bifilamental, i.e. consisting of two main streams.
Warm fluid exits through the upper half of the orifice after being heated by the
cylinder walls. Cool fluid enters by way of replacement through the lower half
of the orifice, descends down the tube then turns around and ascends while it is
being heated along the walls.

Other evidence to show that flow in the inclined open thermosyphon is
predominantly bifilamental was reported by Martin and Lockwood (1964) who
showed through their flow visualisation work that two opposing streams can
co-exist side by side in an inclined thermosyphon, with nothing but a naturally
occurring boundary between them. Lock and Zhao (1990) numerically
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Figure 11.

Measured axial velocity
profiles, differential wall
heating, L/R, = 10
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simulated flow inside an inclined open thermosyphon with a square section at
low Ra, and found that the flow had both bifilamental and annular
characteristics.

Numerical vs. experimental axial velocities

Figures 12 and 13 show a comparison of numerical and experimental orifice
velocity profiles. For differential wall heating the numerical model over-predicts
the maximum outgoing w-velocity by 20 per cent and over-predicts the
maximum incoming velocity by 3 per cent. Although there is qualitative
agreement between the two sets of results the numerical results generally show
more significant variation of velocity across the diameter. For example, a
sharper outgoing velocity peak and a thinner boundary layer on the upper wall.
For both uniform and differential heating the incoming stream has a broader
shape than the outgoing one.

For uniform wall heating the order of magnitude of the maximum velocity is
similar, although the gualitative agreement is somewhat inferior compared to
differential heating. The numerical model over-predicts the maximum outgoing
velocity by only 1 per cent but under-predicts the incoming maximum velocity
by 40 per cent. These results could be due to the discontinuity in the
temperature boundary condition at the orifice assumed in the numerical model.
In practice the discontinuity of temperature may be reduced owing to mixing in
the supply reservoir immediately adjacent to the entrance of the cylinder. In the
experimental test true uniform heating is difficult to achieve because of the
divider between the upper and lower heating chambers, which allows some
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heat exchange between the two chambers. The temperature boundary
condition along the cylindrical walls in the experimental rig may not have been
isothermal as was assumed in the numerical model. The external heating
chambers were isothermal as a result of the high heating water flow rate,
however, owing to circumferential conduction in the glass walls the inner
temperature boundary condition may have deviated from isothermal
conditions. The absence of strong upward moving flow from the lower wall may
be a consequence of the deviation of the experimental boundary conditions from
isothermal conditions.
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Figure 12.

Axial velocity profiles,
numerical vs.
experimental results,
DWH, Ra = 106, LR, =
20

Figure 13.

Axial velocity profiles,
numerical vs.
experimental results,
UWH, Ra = 108,
L/R,=20
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Numerical solutions of Lock and Zhao (1990) as well as the present numerical
investigation predict significant flow rising from the bottom wall. Leslie’s (1960)
analytical model indicates this type of flow, and Martin and Cresswell (1957)
demonstrated it experimentally in thermosyphons inclined at angles from 0° to
45°, and have cited this as the cause of the instabilities which made the Nusselt
number dip for certain inclination angles.

Lock and Zhao (1990) predicted that annular flow occurs only for low
inclinations and near the sealed end. The present numerical model showed the
same but the extent of annular flow was seen to vary with the amount of
heating applied.

Conclusion

The flow structure in an open thermosyphon inclined at 45° has been
investigated experimentally and numerically. The investigation shows that flow
in a differentially heated inclined open thermosyphon is typically bifilamental.
A naturally occurring boundary was maintained between the cold and warm
streams at all times. Using the classification of flows originally made by
Lighthill, the flow would be called impeded for Ra < 10° or t, < 104 beyond
which transition to boundary layer flow begins. Previous workers have quoted
t,=10%5 to 103® as the region of transition for vertical open thermosyphons. The
structure of flow for uniform wall heating is quite different than for differential
wall heating. The flow starts out by being bifilamental at low Rayleigh number
(103), very similar to the flow for differential wall heating, but as Ra is increased
to beyond 10°, an upward flow is developed from the bottom surface, making
the flow annular.

The present work has confirmed previous experimental studies showing that
the interference between incoming and outgoing fluid at the orifice potentially
reduces heat transfer by disturbing the continuity of flow and by mixing, which
narrows the effective temperature difference between the source and sink of
heat in the thermosyphon. The velocity profiles measured by LDA confirmed
the flow visualisation observations of Behnia et al., who demonstrated the
formation of distinct opposing streams in a thermosyphon in an inclined open
cylinder.
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